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Cryptography Research
Cryptography is a traditionally formal field born from mathematics.

● Cryptographic Primitives
○ Key Exchange
○ Signatures
○ Encryption

● Proofs of security under different assumptions
○ Random oracle model
○ Computationally-bounded adversaries 

● Formal modeling
○ Symbolic verification of protocols
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Targeted Case Studies vs Large-Scale Ecosystems
Case Studies

● Bugs in implementations
○ Why Cryptostems Fail [Andersoon 1994], Lessons Learned [Gutmann 2002],  Most Dangerous Code 

[Georgiev 2012]

● Usability problems
○ Why Johnny Can’t Encrypt [Whitten 1999]

Ecosystems

● How do bugs affect the security of the Internet?
○ Matter of Heartbleed [Durumeric 2013], 

● How are we failing to use cryptography to secure the Internet?
○ Alice in Warningland [Akhawe 2013], Imperfect Forward Secrecy [Adrian 2015] 3



Real World Cryptography
The real world is not formal.

● How do we coalesce a formal field with real world systems?
○ What problems exist in the real world that don’t on paper?

● How do we design systems cannot function insecurely?
○ Make cryptographic failures result in functional failure, not silent insecurity

● How do we confidently instantiate theoretical constructs?
○ Formal proofs of implementation correctness

The field is heading in this direction, but it’s not there yet.

Where are we now?
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Fragile, Very Fragile
Cryptography deployed on the Internet is often fragile, but not because the math is wrong.

Complicated
● Difficult to correctly implement primitives and protocols
● Difficult to correctly deploy cryptographic solutions
● Difficult to map between proofs and production

Fragile
● Single mistake can have devastating effects
● Systems with a cryptographic failure often remain functional, but lose security
● Leads to insecurity
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Fragile Ecosystems
The ecosystem of cryptography deployed on the Internet is fragile.

Internet
● Large-scale
● Interconnected and distributed
● Diverse

Cryptography
● Many different protocols, implementations, configurations
● “Cryptographic agility” differentiates otherwise identical software
● Anything could fail
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Empirical Methods in Cryptography
Empirical evidence is gathered through observation and experimentation
● How do you observe and experiment in a formal field?

Understand how cryptography is being used to secure the Internet, and where it fails
● Characterize the fragility

Provide empirical evidence, rather than anecdotal evidence of problems
● Prioritize and inform solutions
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Empiricism and Fragility
Cryptography that is difficult to implement correctly is fragile.

The more parameters in a cryptographic construct, the more ways for it to fail.

These parameters are measurable.

Corollary: Fragile cryptographic ecosystems lend themselves to be studied empirically using 
Internet-wide scanning.
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Thesis Statement
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Large-scale empirical methods allow us to observe fragility in how cryptography is being 
used on the Internet, identify new vulnerabilities, and better secure the Internet in the future.

Show how empirical measurements collected using Internet-wide scanning provides insight 
into how cryptography is used to secure the Internet.



Outline
1. Improving Measurement

How do we use and improve Internet-wide scanning to understand cryptography?

2. Measuring Export Cryptography
How does understanding obsolete cryptography improve modern cryptography?

3. Beyond Internet-Wide Scanning
TLS 1.3 was standardized. What comes next?
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TRUST THE PROCESS



ZMap: Fast Internet-Wide Scanning
Capable of performing a TCP SYN scan in 45 minutes on a 1Gbps connection, 1300x faster 
than nmap [Durumeric 2013]

Many Applications
● Measuring protocol adoption
● Visibility into distributed systems
● High-speed vulnerability scanning
● Measure cryptographic configuration
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Internet-Wide Scanning
Multi-Stage Process

1. Identify Hosts
● IP and Transport Layer (L3/L4)
● 4 billion IPv4, but only 50M hosts with port 443

2. Measure Individual Hosts
● Application Layer (L5-L7)
● 50M hosts with port 443, but only 40M HTTPS servers

3. Answer Questions
● What percentage of hosts support X at time T?
● Terabytes of Data
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Applicability
Internet-wide scanning provides an aggregate understanding of the Internet over time.
● Daily / weekly measurement intervals

Can we reach a global understanding of individual hosts?
● Hourly / real-time measurement
● Requires improvements at all stages of the funnel

Is 45 minutes fast enough?
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Scientific Method and Internet-Wide Scanning
A scan is an experiment

● Filtering lets you run your experiment on what matters?

Fix everything except one variable.

● Did I complete a handshake?
● What parameters were used for the handshake?
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ZIPPIER ZMAP



Scanning Speeds
At 45 minutes per port, it would take 5.6 years to scan IPv4 on all 65,535 ports, or 1 month 
to scan 1000 ports.

Network hardware is getting faster, with 10Gbps Ethernet now common.

Can we work towards a better global understanding of individual hosts by running ZMap at 
faster speeds?

● Measure vulnerabilities at time of disclosure
● Correlating results across multiple ports/protocols
● Decrease moving camera effect
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ZMap Performance vs Theoretical Max



Performance Enhancements
Parallelized Address Generation
● Extend multiplicative cyclic group iteration to multiple threads
● Remove global “next address” lock

Zero-Copy Packet Transmission
● Use PF_RING to bypass kernel during packet send
● Removes memcpy and context switch to kernel
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Scan Rate Hit Rate Duration

1.44 Mpps (≈1GigE) 1.00 42:08

3.00 Mpps 0.99 20:47

4.00 Mpps 0.97 15:38

14.23 Mpps (≈10GigE) 0.63 4:29

Performance of Complete Internet-Wide Scans, Port 443



Efficacy of Faster Scanning



Response rate during 50-second scans with 8 second cooldown



Local Drop?: Saw same behavior when splitting send and receive into two machines

Blocked AS?: Drop larger than any one AS, top ASes were the same

Dropped In Transit?: Results from Censys (internally, 2018) suggest drop when transiting 
through certain ASes.

Future Work: Look for commonality among “missing” hosts AS path

What Happened?
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Two Machines



What Instead?
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Step towards continuously understanding the behavior of individual hosts at global scale.

Current Approach
● Sub-1Gbps scanning distributed across a cluster of hosts
● Bound by application layer scanning (ZGrab)
● Still provides aggregate perspective (tens of ports on a weekly basis)

Open Problems
● Packet Drop
● Faster Application Layer Scanning
● Non-scanning approaches



MEASURING SECURE CHANNELS



HTTPS and TLS
TLS is the protocol that provides the secure channel for HTTPS and is the most widely 
deployed cryptographic protocol

Billions of users per day use HTTPS/TLS in their web browser

TLS was originally built for ecommerce, but is required to have a fair and equitable web

TLS 1.2 was standardized in 2008 and was the most current version until August, 2018
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Server Finished: EKms(Hash(m1 | m2 | … ))

Client Key Exchange: EncryptPK (premaster secret)

Kms := KDF(premaster secret, client random, server random)



Measuring TLS
What is measurable?
● All parameterizable or optional aspects of the protocol
● “Cryptographic Agility”

What should we measure?
● Adoption / existence
● Verify assumptions
● Determine impact
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MEASURING EXPORT CRYPTOGRAPHY



Export Cryptography
In the 1990s, “export” of cryptography by US persons was regulated.

International Traffic in Arms Regulations (ITAR), then Export Administration Regulations 
(EAR)

Ban on exporting code with a printed material exception
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Export Key Length Restrictions
Regulations applied to communication with non-US entities

Public-key Cryptography: Max 512-bit public keys
● Finite Field Diffie-Hellman (key exchange)
● RSA (key exchange, encryption)

Symmetric Cryptography: Max 40-bit keys
● Block ciphers (DES)
● Stream ciphers (RC4)

Signatures and Message Authentication Codes were unregulated
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Meanwhile...
1995 — SSLv2 designed, deployed, and deprecated

1996 — SSLv3 replaces SSLv2, forms the basis for modern TLS

1999 — TLSv1.0 standardized by the IETF

1999 — Export regulations are lifted after extensive litigation [Bernstein v United States]
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Impact on TLS
TLS 1.0 and earlier were designed with compliance mechanisms for export regulations

TLS certificates contain >512-bit RSA keys
● OK for authentication!
● Literally Illegal for key exchange!

Solution: “Export” Ciphers
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…EXPORT_RSA…)

Certificate: certificate chain (public key PK)

Client Key Exchange: EncryptPK512 (premaster secret)

Server Finished: EKms(Hash(m1 | m2 | … ))

Kms := KDF(premaster secret, client random, server random)

Server Key Exchange: SignPK(PK512)

512-bit RSA



Factoring
Security of RSA relies and the computational hardness of factoring the public key

Computers are faster now than in 1998, how does this impact factoring?

512-bit keys can be factored in 1-2 hours for ~$100 [Valenta 2015]
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“Going Dark”
Lawful access mechanisms?

“Secure golden key” for law enforcement?

Shouldn’t the academy be able to come up with a “secure” solution for “lawful access?”, or is 
this fundamentally opposed to the goals of cryptography?

What happened last time and were there any lasting effects on either the protocol or the 
Internet?
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FREAK Attack
Discovered by researchers at INRIA attempting to formally model TLS implementation state 
machines.

FREAK attack allows an attacker who can factor 512-bit RSA keys to man-in-the-middle TLS 
connections to servers that support export-grade RSA.
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Client Key Exchange: EncryptPK512 (premaster secret)

Server Finished: EKms(Hash(m1 | m2 | … ))

Kms := KDF(premaster secret, client random, server random)

Server Key Exchange: SignPK(PK512)

Bug: Accepted 
on non-export 

ciphers
512-bit RSA
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Client Hello: ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)
Attacker can 

decrypt

Factored by 
attacker

Client Hello: ciphers (…RSA_EXPORT…)

Server Hello: cipher: RSA Server Hello: cipher: RSA_EXPORT

Client Key Exchange: EncryptPK512 (premaster secret)

Kms := KDF(premaster secret, client random, server random)

EKms(Hash(m1 | m2 | … )) [RSA]

EKms(Hash(m1 | m2 | … )) [RSA]

EKms(Hash(m1 | m2 | … )) [EXPORT]

EKms(Hash(m1 | m2 | … )) [EXPORT]



FREAK Impact
FREAK is an implementation bug stemming from complexity around compliance 
mechanisms for export regulations
● OpenSSL (Chrome)
● Microsoft SChannel (Internet Explorer)
● Apple SecureTransport (Safari)

Modern clients are vulnerable, but FREAK only has impact if servers support export-grade 
RSA ciphers.

Measure support for export-grade RSA!

44



The FREAK attack is possible when a vulnerable browser connects to a susceptible web 
server—a server that accepts “export-grade” encryption.

Vulnerable at Disclosure
(March 3, 2015)

Vulnerable One Week Later
(March 10, 2015)

HTTPS Servers at Alexa Top 1M 
Domains 9.6% 8.5%

HTTPS servers with browser-trusted 
certificates 36.7% 6.5%

All HTTPS servers 26.3% 11.8%

FREAK Measurements



TLS also contains export-grade Diffie-Hellman ciphers.

How do these ciphers work, and how hard is it to break 
512-bit Diffie-Hellman today?

What About Other Export-Grade Key Exchange
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…DHE…)

Certificate: certificate chain (public key PK)

Server Finished: EKms(Hash(m1 | m2 | … ))

Client Key Exchange: gb

Kms := KDF(gab, client random, server random)

Server Key Exchange: p, g, ga, SignPK(p, g, ga)

512-bit group for 
export ciphers



Discrete Log
The security of Diffie-Hellman relies on the computational hardness of computing discrete 
logs, e.g. given g, p, and gx mod p, calculate x.

The number-field sieve is the fastest-known algorithm for computing discrete logs.

48Depends only on p, 1 week for 512-bit p Fast
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Client Hello: ciphers (…DHE…)

Certificate: certificate chain (public key PK)

Server Key Exchange: p512, g, ga, SignPK(p512, g, ga)

Client Hello: ciphers (…DHE_EXPORT…)

Server Hello: cipher: DHE Server Hello: cipher: DHE_EXPORT

Client Key Exchange: gb

Kms := KDF(gab, client random, server random)

EKms(Hash(m1 | m2 | … )) [DHE]

EKms(Hash(m1 | m2 | … )) [DHE]

EKms(Hash(m1 | m2 | … )) [EXPORT]

EKms(Hash(m1 | m2 | … )) [EXPORT]



Do real-world servers support export Diffie-Hellman?
● How many trusted HTTPS hosts support export DHE? Alexa Top 1M?
● Did people disable export DHE when disabling export RSA?

Precomputation takes ~1 week and is not feasible for many unique p.
● How many unique 512-bit primes are used by trusted servers?
● Do implementations regenerate primes?

Answer these questions with Internet-Wide Scanning
● Implement support for Diffie-Hellman in ZGrab
● Parse out selected Diffie-Hellman parameters

Logjam Empirical Questions
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Export Cipher Support Among Servers with Trusted Certificates



8.5% of the Alexa Top 1M supported DHE_EXPORT
3.4% of trusted IPv4 supported DHE_EXPORT

Prime Popularity Among Top 1M

Apache mod_ssl 82%

nginx 10%

Other (463 primes) 8%

Top 1M Support
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Measuring Export Cryptography
FREAK is an implementation vulnerability surrounding export-grade cryptography, which was 
only possible to exploit because of empirical properties of the Internet.

Logjam is a protocol vulnerability where the difficulty to exploit relies on empirical properties 
of the Internet.

Where else is there export cryptography, and does it have similar vulnerabilities?
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SSLv2: Cryptography from the Deep
SSLv2 is already know to be broken.
● Does not authenticate handshake
● Only used for one year (1995), officially deprecated in 2011

FREAK and Logjam show harms of supporting obsolete cryptography.
● Conventional wisdom for servers was to support all ciphers for compatibility
● This advice appears to be actively harmful

Is SSLv2 a harmless vestige, or can it be used to attack modern TLS?
● Do servers still support SSLv2? Are people actually using SSLv2?
● SSLv2 has export ciphers, does this affect modern TLS?
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SSLv2 / TLS Support Among Top 1M Domains



SSLv2 Support in Non-HTTPS Protocols

All Certificates Trusted Certificates

Protocol Port TLS SSLv2 TLS SSLv2

SMTP 25 3,357 K 936 K (28%) 1,083 K 190 K (18%)

POP3 110 4,193 K 404 K (10%) 1,787 K 230 K (13%)

IMAP 143 4,202 K 473 K (11%) 1,781 K 223 K (13%)

HTTPS 443 34,727 K 5,975 K (17%) 17,490 K 1,749 K (10%)

SMTPS 465 3,596 K 291 K (8%) 1,641 K 40 K (2%)

SMTP 587 3,507 K 423 K (12%) 1,657 K 133 K (8%)

IMAPS 993 4,315 K 853 K (20%) 1,909 K 260 K (14%)

POP3S 995 4,322 K 884 K (20%) 1,974 K 304 K (15%)



SSLv2 Export Ciphers
Send all but 5 bytes of the key in plaintext.
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Server Hello: random, ciphers (…EXPORT_RSA…), certificate

Client Finished

Client Hello: random, ciphers (…RSA…)

Server Finished

Client Master Key: cipher EXPORT_RSA, mkclear, EncPK(mksecret)

master_key = mkclear || mksecret

Server Verify



SSLv2 Oracle
Use SSLv2 as a Bleichenbacher oracle by malleating TLS ciphertexts into SSLv2 cipher texts

Options for Oracle Query:

1. Brute-force the five-byte export key
2. Exploit “extra-clear” bug in OpenSSL
3. Exploit “leaky export” bug in OpenSSL
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DROWN Vulnerability
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Impact of Key Reuse

All Certificates Trusted Certificates

Protocol Port TLS SSLv2 Vulnerable Key TLS SSLv2 Vulnerable Key

SMTP 25 3,347K 936K (28%) 1,666K (50%) 1,083K 190K (18%) 686K

POP3 110 4,193K 404K (10%) 1,764K (42%) 1,787K 230K (13%) 1,031K (58%)

IMAP 143 4,202K 473 K (11%) 1,759K (59%) 1,781K 223K (13%) 1,022K (58%)

HTTPS 443 34,727K 5,075K (17%) 11,444K (33%) 17,400K 1,749K(10%) 3,931K (22%)

SMTPS 465 3,596K 291K (8%) 1,439K (40%) 1,641K 40K (2%) 949K (58%)

SMTP 587 3,507K 423K (12%) 1,464K (40%) 1,657K 133K (8%) 986K (59%)

IMAPS 993 4,315K 853K (20%) 1,835K (43%) 1,909K 260K (14%) 1,119K (59%)

POP3S 995 4,322K 884K (20%) 1,919K (44%) 1,974K 304K (15%) 1,191K (60%)



Fully disable SSLv2
● Don’t only disable export ciphers
● If only ciphers are disabled, make sure they’re actually disabled (CVE-2015-3197)

Have single-use keys
● Usually discussed in the context of signatures vs. encryption
● Prudent to use different keys across different protocol versions

Authenticate the client before sending secret-derived data
● DROWN is possible because of the early ServerVerify message
● Design protocols to check the client has knowledge of the secret first

Mitigations and Lessons
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All types of export 
cryptography have led to 
attacks against modern 
cryptography.



Empirical results were 
key to all export-related 
attacks on TLS.
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Generalizing DROWN
Reusing a key across multiple TLS protocols increases attack surface
● HTTPS, SMTPS, IMAPS…
● X.509 keys are not bound to any particular port or protocol

A key compromised in one protocol can be used to attack another protocol
● Compromise does not need to be a TLS protocol vulnerability
● Compromise could be as simple as an RCE on a mail server

An active attacker can leverage any TLS vulnerability in one protocol to attack another
● Perform any necessary application-layer protocol handshake
● Rewrite victims client to another port
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Attack Type Example

Can be used to attack hosts the share a...

...key but not name ...name but not key

Key Compromise RCE Yes Yes

Passive Attack on Handshake DROWN Yes No

Active Attack on Handshake
Logjam
FREAK
DROWN

Likely Yes

Post-Handshake Attack Padding Oracle No Yes

Cross-Protocol Attack Types



Modern 
Client

Unpatched
Mail Server

Patched 
Web Server

Shared Name

Shared Name Padding Oracle Attack Scenario

1. Redirect 
Connection 
Across Ports

2. Exploit 
Padding Oracle 
to Extract 
Cookie



The increase in attack surface is measurable.

1. Identify hosts vulnerable to TLS attacks on non-web ports
AES-NI Padding Oracle, ROBOT, Logjam, FREAK

2. Identify HTTPS hosts
Basic Internet-wide Scanning

3. Map between the two datasets, accounting for preconditions
Hosts that meet preconditions for cross-protocol attack

Future Work in Cross Protocol Attacks
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LOOKING FORWARD



TLS 1.3
Using empirical cryptography to inform future protocol design

● Standardized in August 2018
● Informed by the last 10 years of cryptography research
● Can it avoid the pitfalls of the past?
● New “version”, but with a very new shape
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TLS 1.3 Design
Named Groups
● Unify parameter selection for (EC)DHE
● Select from preset list of curves/groups, each following best practices

Limiting RSA
● No RSA key exchange
● Replace PKCS #1.5 with PSS to avoid Bleichenbacher failures

Explicit Verification
● Server signs handshake transcript with certificate key
● Prevents downgrade attacks leveraging weak session keys

71



TLS 1.3 Risks
Server sends secret-derived data before verifying client has knowledge of secret
● Necessary condition for DROWN-like attacks
● May lead to new types of server oracles

0-RTT mode explicitly does not prevent replay attacks
● Is this an application layer or protocol concern?
● Can it be leveraged for protocol-level attacks?
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If you can measure it, 
then it can fail.



Wireguard
Wireguard is a VPN protocol with only two cryptography-related settings
● Which ed25519 key to use?
● Which ed25519 keys to trust?

Handshake is not configurable, what is there to measure?

Empirical techniques let us characterize problems, but they are no substitute for avoiding 
problems before they happen.
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Cryptography Measurement Beyond Secure Channels
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Monitoring cryptocurrency peer-to-peer networks has already been used to deanonymize 
transactions

Post-quantum cryptography is being standardized, can we measure it as it’s being deployed?

Certificate Transparency requires a gossip protocol, can we measure its effectiveness?

Are websites that use Javascript (client-side) cryptography doing so safely?

Is the cryptography we’re using working as well as the math says that it should?



Network Measurement Beyond Cryptography
How do everyday users take advantage of all this data? Is cryptography data relevant to 
sysadmins?

● Measuring attack surface
● Quantifying risk
● Identifying assets

You can’t protect what you don’t know you own.

Can we index the devices and configurations of devices on the Internet in the same way 
Google indexes the content? Can we measure the Internet at the same rate it’s changing? 
What about IPv6? 
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Keep your denominators 
consistent.
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