Didn't Chrome Already Have a Root Store?
“Starting in Chrome 105, to improve user security and provide a consistent experience across different platforms, Chrome maintains its own default root store and built-in certificate verifier.”

Chrome Release Notes
Chrome 105, August 2022
HTTPS is the foundation of web security
We can derive a shared secret and use it to create a secure channel.
Confidentiality

Integrity

Authentication
Confidentiality

Integrity

Authentication
I am google.com

Are you, though?
Digital signatures enable us to authenticate someone if we know their public key.
(public_key, private_key) = GenSigningKey()
sig = Sign(private_key, data)
ok = Verify(public_key, sig, data)
Digital signatures enable us to authenticate someone if we know their public key.

But how do we know the public key?
body = [
 name,
 public_key,
 issuer_name,
]

sig = Sign_{Issuer}(body)
I am wikipedia.org

body = [
 "wikipedia.org",
 wikipedia_pubkey,
 "Let’s Encrypt",
]

sig = Sign_LE(body)
Where do issuers come from?
Where do issuers come from?

Browser and platform vendors!
Vendors trust a set of certification authorities to validate domain ownership and issue certificates that attest that a key is associated with a set of names.
Browser and platform vendors maintain root stores, which contain the set of root certificates representing trusted issuers.

The policies and requirements around what root certificates are included a root store is known as a root program.

- Mozilla Root Program
- Apple Root Program
- Microsoft Root Program
- Chrome Root Program
CAs are responsible for domain validation, issuance, and conveying status.

Ensuring the requestor operates the domain

Signing certificates

Is a specific certificate revoked?
A single compromised CA can negatively impact any number of domains on the Internet.
Trust.
Chrome
The Old Days

Chrome launched in 2008 (alongside a comic drawn by Scott McCloud).

Chrome used the platform-provided root stores.
- Apple Root Store
- Microsoft Root Store
- Mozilla Root Store
Browsers need to offer consistent capabilities on a diverse set of devices

Over time, Chrome started providing its own implementations for more components of the browser (HTTP, Graphics, TLS).

- Performance
- Patching
- Prioritization
Platform Certificate Verifiers

- ✅ Good citizen of the platform
- ✅ Automatically pick up locally installed roots
- ✅ Automatically pick up device configuration changes
- ❌ Limited by the update cadence of the platform and device
- ❌ Often coupled with platform root stores
- ❌ May not meet the needs of a browser that needs to handle trust incidents on behalf of its users
A Few Trust Incidents...

<table>
<thead>
<tr>
<th>Company</th>
<th>Year</th>
<th>Incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>DigiNotar</td>
<td>2011</td>
<td>● Attacker compromises DigiNotar CA and issues rogue certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● All platforms immediately distrust the CA</td>
</tr>
<tr>
<td>TurkTrust</td>
<td>2011</td>
<td>● Accidentally issued two intermediate CA certificates to subscribers, one of which was used for impersonation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Chrome blocked the misissued certificates, platforms continued to trust the CA</td>
</tr>
<tr>
<td>Wosign</td>
<td>2016</td>
<td>● Misissued a certificate for Github and backdated certificates to avoid security requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Staged distrust by Chrome, eventually distrusted by all platforms.</td>
</tr>
<tr>
<td>Symantec</td>
<td>2017</td>
<td>● Repeated failure to validate domain ownership before issuance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Staged distrust by Chrome, eventually distrusted by all platforms.</td>
</tr>
</tbody>
</table>
Platform Certificate Verifiers
Chrome Certificate Verifier and Chrome Root Store

Chrome Certificate Verifier

- A common certificate verification process across Windows, macOS, Chrome OS, Linux, and Android
- Implements additional verification required by Chrome (Certificate Transparency, etc)
- Consistency on the failure cases!

Chrome Root Store

- Root store operated by the Chrome Root Program shipped directly with Chrome on all Blink platforms
- Updated with Chrome
- [Chrome Root Program](#) can more directly represent Chrome in the Web PKI
Launch

Goals

● Don’t break anything.
● Maintain a high bar for certificate verification

Approach

● Platform-by-platform
● Import local trust decisions
● Flag and enterprise policy to revert to old behavior
Launch

Windows
- 13 unique location for trust and distrust information
- *Trusted People* store

Mac
- Load local trust anchors added to the Default and System keychains
- Cache at startup to work around keychain becoming non-responsive

Android
- Load user-installed certificates with Android Java SDK
- Cross-language callback and synchronization

Linux
- Very uneventful

ChromeOS
- Had been using CCV since ~2019
Launch Validation

Dual-Verifier Trial

- Run the platform verifier and CCV+CRS for a subset of users
- Look for differences in results

A/B Test

- Standard part of Chrome launch process
- Compare CRS+CCV enabled vs disabled
Despite stricter requirements, launching the Chrome Root Store and Chrome Certificate Verifier decreased certificate errors across the board.
Metric Improvements

1. More accurate verification
 - 40% decrease in certificate interstitials on Windows

2. Faster certificate verification
 - 30-85% decrease in time to verify a certificate

3. Faster page loads
 - ~1% decrease in time to first contentful paint

4. Improvement in Core Web Vitals
 - ~0.1% increase in pass rates
Why launch a root program?
Improve security
Improve experience
Improve the Web PKI
Moving Forward, Together

Increase Security through Agility and Simplicity

✨ Automation ✨
CAAs
How to be a CA

Bootstrapping

1. Audited key generation with hardware-backed key material (HSM)
2. Root certificate compliant with the CA/Browser Forum (CABF) Baseline Requirements (BRs)
3. Apply to root programs
CA Audits

Brittle: CA’s trustworthiness assessed by paperwork-like audits

- The CA chooses the auditor
- Audit output is 2-3 pages of mostly boilerplate
- Audit quality varies

Compliance, not security.
How to be a CA

Operations

1. **Domain Validation**
2. Issuance
3. Certificate Status
Challenge:

I would like a certificate for example.com

Manual Issuance
Domain Validation

I would like a certificate for example.com

Challenge: 0x34df32dc...

Request to example.com/

Challenge: 0x34df32dc...

Certificate for example.com

ACME Protocol

I would like a certificate for example.com

Challenge: 0x34df32dc...

Manual Issuance
Domain Validation

Agile: ✨ Automation ✨
Domain Validation Reuse

- Day 0
 - Certificate
 - Domain Validated

- Day 90
 - Certificate

- Day 180
 - Certificate

- Day 270
 - Certificate

Max Domain Validation Age
398 Days
Domain Validation Reuse

Day 0
- Domain Validation Max
- Certificate

Day 398
- Certificate

Day 796
- Effective Domain Validation Max
Domain Validation Reuse

Risk: Point in time validation spread across lifetime of certificate

More secure: Reduce or eliminate domain validation reuse

More secure: Eventual reduction of maximum certificate lifetime
Multi-Perspective Domain Validation

Risk: BGP hijacking, DNS spoofing, etc.

Reality: Web PKI is distributed and delegated TOFU

More secure: Domain validation from multiple perspectives
How to be a CA

Operations

1. Domain Validation
2. **Issuance**
3. Certificate Status
How do site operators know what certificates exist for their site?
Certificate Transparency

More secure: Reveal targeted attacks by requiring trusted certificates to be publicly logged
How to be a CA

Operations

1. Domain Validation
2. Issuance
3. **Certificate Status**
Revocation.

How hard could it be?
Certificate Revocation Lists (CRLs)

Big lists of certificates that have been revoked

- Key compromise
- Administrative reasons
- Change of ownership
Certificate Revocation Lists (CRLs)

Too Big for Clients: Tens or hundreds of megabytes of revocation data

Expensive to Host: $400K-$1M / month to host in the wake of Heartbleed

Not Really Required: CRLs were optional in the BRs

Source: Hard Costs of Heartbleed
Hello, I want to talk HTTPS to example.com

example.com certificate

Is this certificate for example.com revoked?

No

GET /
Online Certificate Status Protocol (OCSP)

Privacy Leak: Reveal browsing habits to CA

Fail Open: Too slow and unreliable to be checked for every connection

Overcomplicated: Onerous requirement that provide little security value

Expensive: Let’s Encrypt receives more OCSP requests than for all ACME endpoints by an order of magnitude.

Source: [ServerCert WG Archive](https://www.servercert-wg.org/)

Simplified Revocation

1. Get rid of OCSP

 Don’t waste time enforcing requirements that don’t add security value. Reduce costs and spend that effort in higher-impact areas.

2. Mandate CRLs

 Browser’s can distribute revocation information consumed from crawling CRLs (CRLite)

3. Reduce the need for revocation by reducing certificate lifetimes

 ✨Automation✨ unlocks short-lived certs
Ballot SC-063: Make OCSP optional, require CRLs, and incentivize automation.

- Enable browser-mediated revocation
- Achieve security via agility

Simplify requirements

Note: Ballot passed on July 13th, 2023
From **overcomplicated** to **simple**

...leveraging ✨*Automation*✨ to go from **glacial** to **agile**

...helps us make the Web PKI **more secure**
Improve security

Improve experience

Improve the Web PKI
public@ccadb.org
Didn't Chrome Already Have a Root Store?